'. Computer Science
Muminated

SECOND EDITION

Nell Dale John Lewis

Chapter 9

Abstract Data Types
and Algorithms

Abstract Data Types

Abstract data type A data type whose
properties (data and operations) are
specified independently of any particular
implementation

The goal in design is to reduce
complexity through abstraction

93

Abstract Data Types

In computing, we view data from three
perspectives
— Application level
« View of the data within a particular problem
— Logical level
* An abstract view of the data values (the domain)
and the set of operations to manipulate them
— Implementation level
« A specific representation of the structure to hold

the data items and the coding of the operations in a
programming language 95

2018/11/22

Chapter Goals

+ Define an abstract data type and discuss its role
» Distinguish between an array and a list

+ Distinguish between an array-based implementation and
a linked implementation

+ Distinguish between a selection sort and a bubble sort

+ Apply the selection sort, the bubble sort, and the
Quicksort to a list of items by hand

+ Apply the binary search algorithm

« Distinguish between the behavior of a stack and a queue

9-2

il R A SR S

Spriteff) 7 1% 5 A
G =
I

—

Spritelek 7 WAL 5 441 AR 16 2

Billn: texturef776k, %30 (fFEEED .
BT BT PR, W SR .
GIFERHD + R UplayerfT N, Bt
FEH T, ARAS S A T SRR (4] 0D

94

Abstract Data Types

» Data structures The implementation
of a composite data fields in an abstract
data type

« Containers Objects whole role is to hold
and manipulate other objects

s TAMEREAEI00E, BAAEERES. A Il HE. 8.
g SRR O AR AR, FRIA R getNext(), fETAFAE
4 cexist(), EHTIERcreset() o

R AN AR, s name REKEEAEI A, s height IRIFKEEAE
B e, AR

SO HCHE S SRR, AR RORIE

H.14

9-6

sepsl, TR AN] A e i) A

< PRI EEZ Lt

//input class
count=0
class.reset() //WIURILZE A I FRET
WHILE class.exist() DO
student = class.getNext()
IF student.isFemale THEN count++

END WHILE

Output count I/ I ik
//input class
count =0

FOR EACH student in class DO

IF student.isFemale THEN count-++
END FOR
Output count

97

2018/11/22

FEIZ IR T 31 5% 10 7

R IR
G MR, F8H)

e 77

3 R A
EEC T (BT (ST

9-8

whms: EBIEER T

99

] K gt A

TEU3) 1 5L A B o SR
WU R A

- @tk

-1TA

RIS () ZEMXR
- A% (part-of)

— 47K (is-a)

FH A1) PN 3R 2 S

- HE, TN

6-10

I REURE 5 S R 5 N 37 35

o BRI R 5

— T —E S RIS B — AR bR R A
S, LI 405255, R — 408 15K0S X 4LS it
BT RGBT R E AT R R

— R 15/2D452.62/4052. /"R THI ¥ 3 2 v [B T I 5 49 2%
BT, M, “DMOR “BuR. EET K3, JRHMECT
SEANGI/N . PSR R F R IR R A R E A
BUREHE 2 BI554052F

o TERBE LA IR AR
- AR ES
- P R T
- RS

X/ gtk Jik

A% % (domain objects)

CLASS Bookshelf
« book index: from-number, to-number
« container: sorted books by book-index
+ Operations
findByName (book-name)
findByAuthor (author-name)
findBylndex (book-index)

CLASS Book
* name
« author
* book-index

SEHL IR

Structure Book {
string name
string first-name, last-name
string book-index

}
Array Bookshelf<Book>

Book findByName(String book_name){

2018/11/22

KB R HE (D)

o RS, RETEITH, SERRERT (RF LA ANk,
ESTECREESNE (o N S L= DI

o THIRMMEARINZDT, R ERIE T A R AR

HiL S5

* look for mybook . (RN ? D
H:1 : sequence-search (mybook, bookshelfs) —C(IFF#EHR)
FOR each bookshelf in bookshelfs DO
IF mybook.index-number between bookshelf’s form-number to to-number THEN
return bookshelf.findByIndex(mybook.book-index)
END IF
END FOR
4352+ binary-search (mybook, bookshelfs) (=4 A4k, AT -
g0 to the middle bookshelf of the bookshelfs
IF mybook.index-number GREAT THEN to-number THEN
binary-search (mybook, frontal bookshelfs)
END IF
IF mybook.index-number LESS THEN from-number THEN
binary-search (mybook, posterior bookshelfs)
END IF
IF mybook.index-number BETWEEN form-number to to-number THEN
return bookshelf findByIndex(mybook.book-index)
END IF
915

Arrays

* An array is a named collection of homogeneous
items in which individual items are accessed by
their place within the collection
— The place within the collection is called an index

Language Array Declaration

Ada type Index Range is range 1..10;
type Ten Things is array (Index Range) of Integer;

VB.NET Dim TenThings(10) As Integer

C++iJava | int tenThings[10]:

9-14
o XFEHAL
- S ERERK
— BB BRI GRATEE RN D
- BLCHIR S A
— PRATREA BEE IR B
— PRATRE TR TARE KB E
— FRERE R TOREL T AR
9-16
Arrays
(0] 1066
[1] 1492
[2] 1668
[3] | 1945
[4] 1972
[5) 1510
[6] 999
[7] 1001
(8] 21 et
[9] 2001 818

2018/11/22

n Array-Based Implementations n Array-Based Implementations

* Recall that length list
—an array is a named collection of | | [0]
homogeneous items m
— An item’s place within the collection is called (2]
an index [3]

« If there is no ordering on the items in the
container, we call the container unsorted [length—1]

« If there is an ordering, we call the
container sorted

Figure 9.1 Alist [MAX_LENGTH-1]

n Array-Based Implementations n Array-Based Implementations
length list length list
Ce] 60__ (0] e] 60 |0
75 M 65 1
95 2] 75 [2]
80 [3] 80 (3]
&5 (4] 20 4]
90 5] 95 [5]
o
[MAX_LENGTH-1] asorted ist o [MAX_LENGTH-1]
9-21 integers 9-22

n Linked Implementation n Linked Implementation

* Linked implementation An
implementation based on the concept of a
node

/
7
* A node is made up of two pieces of L’| ‘/L\fi*{ 4 | e **|\~
information
— the item that the user wants in the list, and
— a pointer to the next node in the list Pointer to

next item in
the list

User's data

/]

L/

End of list

///
x|

9.23 Figure 9.4 Anatomy of a linked list 9-24

Linked Implementation

Figure 9.5 An unsorted linked list

Linked Implementation

.
ya R an
%/gﬁjﬁ

IERR

=13

Figure 9.7 Store a node with info of 67 after current

9-27

n Bav: BERSCHLS B SEH t

- A B b
o ¥Zindexif M. FUH MR
. Bk

- AFIER: WA LA RS
- IR PR R B

o FAEE: BERIIE
o MEREE: HERIE

2018/11/22

Figure 9.6 A sorted linked list

Linked Implementation

-
- H-E B E T
MEAE Y

Figure 9.8 Remove node next(current)

9-28

n Lists

 List operations
— Create itself
— Insert an item
— Delete an item
— Print itself
— Know the number of items it contains

» Generic data type (or class) A data type or
class in which the operations are specified but
the type or class of the objects being
manipulated is not

Sorting

» Because sorting a large number of
elements can be extremely time-
consuming, a good sorting algorithm is
very desirable

» We present several quite different sorting
algorithms

2018/11/22

Selection Sort

* List of names
— Put them in alphabetical order

* Find the name that comes first in the alphabet,
and write it on a second sheet of paper

« Cross out the name on the original list

« Continue this cycle until all the names on the
original list have been crossed out and written
onto the second list, at which point the second list

Selection Sort (cont.)

A slight adjustment to this manual
approach does away with the need to
duplicate space
— As you cross a name off the original list, a free
space opens up

— Instead of writing the minimum value on a
second list, exchange it with the value
currently in the position where the crossed-off
item should go

9-33

is sorted
9-32
Selection Sort

items items items items items

[0] | Sue [0] | Ann [0] [Ann [0] [Ann [0] Ann
[1] | Cora [1]]| Cora [1] | Beth [1] | Beth [1] | Beth
[2]| Beth [2] | Beth [2]| Cora [2]| Cora [2]| Cora
[3] | Ann [3]]| Sue [3] | Sue [3] | Sue [3] June
[4] | June [4] | June [4] | June [4] June [4] Sue
(@) (b) (0) (d) (e}

Figure 9.9 Example of a selection sort (sorted elements are shaded)

9-34

Select Sort fH IR

list= {Sue, Cora, Beth, Ann, June}
FOR i from 0 to list.length-2 DO

Find index of the smallest item in list[i..list.length-1]
IF index <> i THEN
list.swap (i, index)
END IF 0, L, 2, 3, 4
END FOR list= {Sue, Cora, Beth, Ann, June}

FOR i from 0 to list.length-2 DO
index =1
FOR j from i+1 to list.length-1 DO
IF list[j] < list[index] THEN index=j
END FOR

END FOR

Bubble Sort

+ A selection sort that uses a different
scheme for finding the minimum value
— Starting with the last list element, we compare
successive pairs of elements, swapping
whenever the bottom element of the pair is
smaller than the one above it

Bubble Sort

items items
[ol [0] | Phil [o] | Phi1
(1] wml a | w|[E
[21 [2] | Bob [2] | Bob
(31 [3] | John [3] | dohn

(41| Jim [4] | Jim [4] | Jim

a) First iteration (Sorted elements are shaded.)

items items items items
(o] | A1 o] | A1 o] | a1
(1
(1] | Bob [1] | Bob [1] | Bob Figure 9.10
[2] | phil [2] | Jim (21| Jim Example of a
bubble sort
(3] | Jim [3] | phi1 (3] | John

[4] | John [4] | John [4] | Phil

b) Remaining iterations (Sorted elements are shaded.)

2018/11/22

Bubble Sort [& 24k

list = {Sue, Cora, Beth, Ann, June}

Quicksort

» Based on the idea that it is faster and easier to
sort two small lists than one larger one

— Given a large stack of final exams to sort by name

— Pick a splitting value, say L, and divide the stack
of tests into two piles, A-L and M-Z

— note that the two piles do not necessarily contain the
same number of tests

— Then take the first pile and subdivide it into two piles,

A-F and G-L
— This division process goes on until the piles are small
enough to be easily sorted by hand 030

Binary Search

* A sequential search of a list begins at the
beginning of the list and continues until the
item is found or the entire list has been
searched

* A binary search looks for an item in a list
using a divide-and-conquer strategy

9-40

Binary Search

» Binary Search Algorithm

— Binary search algorithm assumes that the items in the list
being searched are sorted

The algorithm begins at the middle of the list in a binary
search

If the item for which we are searching is less than the item in

the middle, we know that the item won't be in the second half

of the list

— Once again we examine the “middle” element (which is really
the item 25% of the way into the list)

— The process continues with each comparison cutting in half

the portion of the list where the item might be

9-41

Binary Search

Boolean Binary Gearch (first, last)

If (first > last)
return false
Else
Set middie to (first + last)/ 2
Set result to item.compareTo(list[middle])
If (result is equal to 0)
return true
Else
If (result < 0)
Binary Search (first, middle —1)
Else
Binary Search (middle + 1, last)

Binary Search

Searching for cat
[0] ant BinaryBearch(0,10) | middie: 5 | cat < dag
(11 o BraryBearch(0,4) | middie: 2 | cak < chicken
) midle: O | cat > ant.
[2] chicken BlnarySearch(}, 1) midele: 1 cat = cat Return: true
[3] cow
Searching for zebra
(4] deer BinarySearch(0,10) | middie= 5 | zebra > dog
[5] dog BinarySearch(5,10) | middle: 8 | zebra > harse
BinarySearch(9,10) | middle: 8 | zobra > camel
(el U i 10) | middde: 10| zobra > snake
7 oAt BinarySearch{il, 10) last. > first Return: false
9
(el (e Searching for fish
[9] carmel BnarySearch(0,10) | middles 5 | fish > dog
[10] araks BinaryGearch(6, 10) | middle: & | fish < horso
7) | mdde: & | fish=fien Retum:true
Figure 9.14 Trace of the binary search 9-43

2018/11/22

Binary Search

Length | Sequential Search Binary Search
Base 10 Base 2
10 5.5 29 3.3
100 50.5 5.8 6.6
1,000 500.5 9.0 9.97
10,000 5000.5 12.0 13.29

Table 9.1 Average Number of Comparisons

9-44

u At A TE S I

9-45

s P T A

3) EEERE (TR .
H—ANeNIEREA., N=2's ST DEIKHS], S8 ELN IR, %
VRl — M Ex, RBEFEEMAP. B, =EHA:

1 3 7 10
2 4 8 11
3 6 9 15

8 10 17

7
W AR ROR R TR SR AL 5, 11, 151 RSB H .
B 1) WERAARNEL 2 R R EE NN

9-46

Stacks(#%)

» A stack is an abstract data type in which
accesses are made at only one end

— LIFO, which stands for Last In First Out

—The insert is called Push and the delete is
called Pop

— Empty() Rzl A% o 75 47 £ 208k 10

9-47

RN H

//input n and base

Initialize stack S

WHILE n not Zero DO
S.push(n mod base)
n=ndiv base

END WHILE

WHILE not S.empty() DO
k= S.pop()
printk

END WHILE

i] —)i U X AR 7 [D B
i B IR £ I L T 3

Queues(BL51))

* A Queue is an abstract data type in which items
are entered at one end and removed from the
other end

— FIFO, for First In First Out
— Like a waiting line in a bank or supermarket

— No standard queue terminology

« Enqueue, Enque, Enq, Enter, and Insert
are used for the insertion operation

« Dequeue, Deque, Deq, Delete, and Remove
are used for the deletion operation.

2018/11/22

Wkt DNz I A A

WL TR -

o

9-49
2o Sty A L
FAF I T IET XK
VI 10* 1077 FFHIRE
i WA P AR :
i HH AR
WHILE not Ji#xR&5%H DO
ch=%fFHiN
CASE ch DO
‘AT AERTHE—2E, break
‘D’ AT, break
7777777777 ‘W LRk, break
‘S’ RHTEE—25, break
END CASE
A AR
END WHILE
#fit Game Over!!!
9-51

BB R R (7

B 10% 1075 [list:

XX
snake(BA51)):
4,0 | €head
3,0
2,0 snake[H] A 30 :
1,0
’ . 2,7 | €head
0,0 | €tail 4.0
3,0
2,0
10 | <tail
9-52

(=4

1. Bubble Sort the list: 33, 56, 17, 8, 95, 22. Make sure the final result is
from small to large.
Write out the list after the 2nd pass. (10 points)

2. Give a sorted array as list={60,65,75,80,90,95}. Design an algorithm to
insert the value of x into the sorted array. Then test the algorithm with
value 50,67,99.

BB AP S lstk by PR RE B =R
I, IRREMRES 2

3. What is the state of the stack after the following sequence of Push and
Pop operations?

Push “anne”; Push “get”; Push “your” ; Pop; Push “my” Push “gun”

