Computer Science
Muminated

SECOND EDITION

Nell Dale * John Lewis

Chapter 6

Problem Solving
and Algorithm Design

(top-down method)

wplirse. BEEYEAR

.
o
4
o -]

o

6-3

Problem Solving

* G. Polya wrote How to Solve It: A New
Aspect of Mathematical Method

» His How to Solve It list is quite general
— Written in the context of solving
mathematical problems
— The list becomes applicable to all
types of problems

6-5

2018/11/8

Chapter Goals

» Determine whether a problem is suitable for a
computer solution (iH5LHL IR D

« Describe the computer problem-solving process (4
J%) and relate it to Polya’s How to Solve It list

+ Distinguish between following an algorithm and
developing one

+ Apply top-down design methodology (5i%) to
develop an algorithm to solve a problem in
pseudocode (1.A)

Problem Solving i @K fif)

* Problem solving The act of finding a
solution to a perplexinguz s, 4 M),
distressing dwm , vexing s , Or
unsettled question

64

Ask Questions...

« ...to understand the problem
— What do | know about the problem?

— What is the information that | have to process
in order the find the solution?

— What does the solution look like?
— What sort of special cases exist?

— How will I recognize that | have found
the solution?

u zHHFg: BEEYEAR

X‘i\\
i;&\%

pe @%‘“‘
o " - i

n wIFs. B PEAR

6-7

2018/11/8

AT BRI 4% A -
HBEFTRA: 1/0

A, Bi%E: A>B
HBITEH%E: C>B>D>A

6-8

n wplirse. BEEYEAR

— T ELWLERI A D R i A A

for each /5%x in {A,B,C,D} do
WRREFHRE:
count = 0; TS RE=ER A
for each 22’1 in the class do
if (x[i]==1) then count++;
if (count it #%0) then return x; 2\
@y
end for D2
end for 11“*5‘8"

return SR N\ oY A

69

n Look for Familiar Things

* You should never reinvent the wheel

+ In computing, you see certain problems
again and again in different guises

» A good programmer sees a task,
or perhaps part of a task (a subtask),
that has been solved before and plugs
in the solution

n EHIFs: BEIEPEAR

WAEYE FHES2NN, FRF AR —Legh .
REAEESE
TR
T8 a3 | § cnt
g - B 16
LR 20
ks 7 3
s AR W IS e
6-10

n HzEpl. Mg kR

. i
1. R4O0BMY g, KR Emd
. ﬁlfz

$#24,0BM, LMNLS %,
2 ERBE, ELEH;
1. ##£40BM, LMN, XXX, YYYit&%;;
2. BRI 5, xR, xhk
3. WA N
4. BTHRERM2A, RE2

2018/11/8

Divide and Conquer s PEARDTH

» Break up a large problem into smaller
units that we can handle

1 k)

— Applies the concept of abstraction

— The divide-and-conquer kit ARz —,
“s4”) approach can be applied over and
over again until each subtask is manageable

=pgise. YERIH

1B AL I P
I 2R, R
T H & 3. TR
A4TfE N

s PRI B

S 5

LBGOHRER, BT

LERITHTN PEAR BT 1LARAS At

2 RS A% % o
3. VMR R 3% g%ﬂ;;?%‘fé%
ABSE Lk LU
2.0 HE A il 1
LALERIN 1A ZH 2 TEUHR A
R P E L 2. BUGKRIERE R
6-15 16

EHIF I KK n REIEIT: “m3” K—MIT %

o]t Ask Questions...
— VTR, REKHE2ER R 3E B i i
- JU\.WJJWMH\‘ éﬁfbv
° Ask Questlons - RWIERG, SRIOFNERT2
. . Look for Familiar Things
* Look for Familiar Things C R ER
- MR R
* Divide and Conquer Divide and Conquer

LR 3. M
; ENEaSSive

W, TR 4.0 1

4.2 K48
4.3 1k}

Algorithms (%7%)

« Algorithm A set of instructions for
solving a problem or subproblem in a finite
amount of time using a finite amount
of data

* The instructions must be unambiguous

2018/11/8

wpse. BEIEITAR
I EL LR D 1 R A (R

for each 77 %x in {A,B,C,D} do

WRRBEFHRE:
count = 0; TG EREP AR

for each 2241 in the class do
if (x[i]==1) then count++;
if (count it 2-%0) then return x;
end for
end for

return R

Computer Problem-Solving

Algorithm Development Phase
Analyze Understand (define) the problem.
Propese aigorithm Develop a logical sequence of steps fo be used to solve the problem.
Tast aigorithm Follow the steps as outlined to see if the solution truly solves the probiem.

Implementation Phase
Code Translale the algorithm (the general solution) inlo a programming language.
Test Have the computer follow the instructions. Check the results and make
corractions until the answers are correct.
Maintenance Phase
e Use the program.
Maintain Moxify the program to meet chaining requirements o to correct any errors.

Figure 6.2 The computer problem-solving process

6-21

Figure 6.3: The Interactions
Between Problem-Solving Phases

Problem-Solving Phase

Implementation Phase

Pseudocode (fhfthd)

» Uses a mixture of English and formatting
to make the steps in the solution explicit

While (the quotient is not zero)
Divide the decimal number by the new base
Make the remainder the next digit to the left in the answer
Replace the original decimal number with the quotient

Epl: Fikwit

RLTP B
— 5142+, R

o HOE MR

= (- (((0+1)+2)+3)+4)+...+n)

« Algorithm
— setsumto 0
— for count from 1 ton
« set sum to sum + count
— end for
— output sum

D ARD 5 g e
- ML

https://www.khanacademy.org/cs/programming/good-practices/p/pseudo-code

Developing an Algorithm

* The plan must be suitable in a suitable
form

» Two methodologies that currently used
— Top-down design
— Object-oriented design

Top-Down Design

 Breaking the problem into a set of
subproblems called modules

» Creating a hierarchical structure of
problems and subproblems (modules)

6-27

Top-Down Design

Wain moduie
{Main progeam)

:1

e |
-

Level 3 An example
of top-down

Boltom Particular design

+ This process continues for as many levels as it takes to

expand every task to the smallest details

» A step that needs to be expanded is an abstract step

6-28

A General Example

» Planning a large party

Invite the people [Level
Prepare the food | "M@ Module [

Invite peopie

Make a list

Call paople
Writs down names: Get phone numbers Get cook books.
Wail a day While more fo call Look for suggestions
Check list Cal Decide on lood 2
Add to list Mark list

Figure 6.6 Subdividing the party planning

Testing the Algorithm

The process itself must be tested

Testing at the algorithm development
phase involves looking at each level of the
top-down design

Testing the Algorithm

» Desk checking Working through a design at a
desk with a pencil and paper

» Walk-through Manual simulation of the design
by the team members, taking sample data
values and simulating the design using the
sample data

* Inspection One person (not the designer)
reads the design (handed out in advance) line
by line while the others point out errors

2018/11/8

e 1/2

1. BEi% Pseudocode Standard, (B ZE 0 LLFTE[)
1) P ARt K 33k o) e B ple 1 632k) F) 7 125
2) CIBFSEN CeEREIFED:, REHE)
3) B -1, 0, 1, 15, 26, 3265 BN RIRIOFEF

2. AR S X

1) Top-down design

2) Work breakdown structure (WBS)

3) MR WBS 5 {5 K22 Top-down il) 5[]

3. AP SR HLAIS/E LR, 38 Fl Top-downi% i /7 ¥ HllPseudocode
RGN IERIREF o BTN AT HAT ARSI R
water_in_switch(open_close) // open T _F/KH K, closeFK 4]
water_out_switch(open_close) // open 1 H-HEKFF 3K, closek
get_water_volume() //3% [F]BeAHL P 35 7K 1) 75

fEb 2/2

motor_run(direction) // LHLEEE) . left/e %, rightfi%%, stopfs
time_counter() // J& A1 4RI [114, DARS g4
halt(returncode) /{#H1, success {1 failure I

D iSEERI ORISR “IEH YA RRF LI, BAETK, B

2) B RBEAEAE, #HlEA) (F. FOR. WHILE®) | BRGHIANX, SHF
BB NE]

3) MURIRISCE, WA “IEW B 5 O fERM BRI LIS
PRI BAEESGE (BB 220, s BRSOt B 02

4) BIBIR) R R GRED L Rl CIERRRT R, R
AR T IR RS A . Bl

wait(time) /5544 € RS [5

77K (volume, timeout) //7£ 5 52 I 7] 4 e RIE K, 75 W #5415

HEK (timeout). %5 T FE

ect-Oriented Design. 7 project] *#kobject, class, field(property)
{45491 (instance) .

Wi R
,method %

6-33

