Computer Science
Muminated

SECOND EDITION

Nell Dale * John Lewis

Chapter 7

Programming Barely

(Low level programming languages)

2018/11/1

MIX BT

Communication

Application

Operating System
Programmin

22

Chapter Goals

» Describe the fetch-decode-execute cycle of the von
Neumann machine

+ Low level programming languages (ifi [f Kl 24 (015 &

— List the operations that a computer can perform

— Distinguish between immediate mode addressing and
direct addressing

— Distinguish between machine language and assembly
language

— Describe the steps in creating and running an assembly-
language program

73

Connecting CPU and Memory

Data Bus
R1 070 |_Load 200R1

- R2 o71 |_Load 201 R2
Py 072 AddR1R2R3
B i R3 073 |_Store 202 R3
T 1
= 200 +14
5 e E)
o | E:‘: 070] pc| ™

“=| Control Unit H

Address Bus

54

The Fetch-Execute Cycle

* Fetch the next instruction
» Decode the instruction
» Get data if needed

* Execute the instruction

5-5

Figure 5.3 The Fetch-Execute Cycle

(2) Decode instruction () Get data
Registers.
FETCH CYCLE EXECUTION CYCLE
(

(1) Fetch Instruction (4) Execute the instruction ’

Main Memory. |

How does CPU work?

* Demo

http://www.science.smith.edu/~jcardell/Courses/CSC103/CPUsim/cpusim.html

5.7

2018/11/1

Computer Operations

* A computer is a programmable electronic device
that can store, retrieve, and process data

Data and instructions to manipulate the data are
logically the same and can be stored in the
same place

« Store, retrieve, and process are actions that the
computer can perform on data

Machine Language

« Machine language (HLEES) The
instructions built into the hardware of a
particular computer (i-SHUATAE TR 50 1)

wE)

Initially, humans had no choice but to write
programs in machine language because
other programming languages had not yet
been invented

- (HO1%E™F?)

79

Machine Language

» Every processor type has its own set
of specific machine instructions

+ The relationship between the processor
and the instructions it can carry out is
completely integrated

« Each machine-language instruction does
only one very low-level task

7-10

PIPPIN Machine: A Virtual Computer

+ Virtual computer A hypothetical machine designed to
contain the important features of real computers that we
want to illustrate

+ Features in PIPPIN

— The memory is made up of 256 bytes. A half store
data and other store instruction

— has 18 machine-language instructions
— Has IR,PC,ACC(£ in#%) registers in CPU
— A 8bit ALU (8fZ[fICPU)
* We are only going to examine a few of these instructions

71

Some Sample Instructions

Opcode | Operand Assembly
Binary Hex | Instruction

Description

Add contents of referenced memory address to contents ¢
Address Mode = Direct

00000000 bbbbbbbb |00 XX [ADD X Example: Add value stored at memory address 128 (1C
<contents of accumulator,

00000000 10000000 00 10

Add immediate value to contents of accumulator.
Address Mode = Immediate

G0 LOYOLTBELEDEDD | 10, %K | 5D #8 Example: Add the number 45 (00101101 binary, 2D

00010000 00101101 10 2

Subtract contents of referenced memory address from con
Address Mode = Direct

00000001 bbbbbbbb |01 XX SUB X Example: Subtract value stored at memory address 129
X) from accumulator.

00000001 10000001 01 11

http://cs.smith.edu/~jcardell/courses/CSC103/PIPPINGuide.html 712

Instruction Format

» The instruction specifier is made up of
several sections
— The operation code
— The register specifier
— The addressing-mode specifier

2018/11/1

Instruction Format

* There are two parts to an instruction
— The 8-bit instruction specifier (#ir4E7R)
— And optionally, the 8-bit operand specifier (£:{FE%0)

[oJofo[x]z[z[z]z] [e]e[o[b[ble[o]e]

instruction specifier: operand specifier:

7777 #AETY AN, B

X:FHEAER — AN A
IR IR E RO B

OF R BURAZ AL) P9 25

A Program Example

Address Instruction ‘;:css‘“;' f]\,:‘;:!;
00 LoD X 3 2
02 SUB #1 2 1
04 JMZ 10 2 1
06 STO X 2 1
08 JMP O 2 1
10 HLT P P

Initial Memory Values N[[!::;D{y l\‘]l,ealrslsn;y
w(2s) [m m m
x (129) 3 2 1

7-15

Program Execution Demo

7-16

Assembly Language

+ Assembly languages (JCHIES) A
language that uses mnemonic codes (8
iLIZF55) to represent machine-
language instructions

— The programmer uses these alphanumeric
codes in place of binary digits

— A program called an assembler reads each
of the instructions in mnemonic form and
translates it into the machine-language
equivalent CBHIFRON M FIFLERE)

Figure 7.5 Assembly Process

//W store n
//setsum to 0
LOD #0
STOY
/ffor count from 1 ton
LOD #1 //i=1
STO X
JMP sum-end(16)
sum-next: LOD X //i++
ADD #1
STO X
sum-end: SUB W
JMZ end(28)
//set sum to sum + count
LODY
ADD X
STOY
JMP sum-next(10)
//end for
end: HLT

AETRAHEIXA G, BT R Ry outputsum

A New Program

//sum (1...n)
set sumto 0
for count from 1 ton
set sum to sum + count
end for
output sum

2018/11/1

High level programming

language
» High level programming language
-?
» Examples
—C, C++,Java, and Visual Basic
— Ada, Lisp, C#
— PHP, Python
—more

http://images.china-pub.com/ebook195001-200000/199000/ch01.pdf 7:20

TIOBE Programming Index

Position | Position Ratings | Delta
Oct 2011 | Gt 2010 | D8Ma I Postion | Progeamming Languags | ooy 41 | ger 2010 | **

1 f Java 17913% | 025% | A

2 2 c 17707% | +053% | A

3 3 Cor aorw [o7e% | A

4 4 PHP es1e% [151% | A

5 & [i c# B723% | +1.76% | A

6 8 11 Objective-C 6245% | +254% | A

7 5 " (visual) Basic a5a% | 110% | A

8 ¥ [Pythan 3944% | 0% | A

a 9 Perl 2432% | +0.12% | A

10 1" 1 JavaScrpt 2191% | +053% | A

11 10 1 Ruby 1526% | 0418 | A

12 12 Delphi/Object Pascal 1106% | 045% | A

1 1 Lisp 1081% | 0055 | A

N 7-21

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html ,2011.10

TIOBE Programming Index

Tiobe Programming Community Index

TIOBE Programming Index

Tiobe Programming Paradigm Index: Type system

—Owarmcatyvpa]

;oz 303 04 s wow wor mow e cow wow
Tine
— g —coe —cr (isual Basic — Pan
|5 —Pup — onears.c — pymon — saasenp
722

« Compiler (4&#) A program that
translates a high-level language program
into machine code

» High-level languages provide a richer set
of instructions that makes the
programmer’s life even easier

Compilers

e)
hk::-alawe! Compier |
language — —_—

Figure 8.1 Compilation process

2018/11/1

Interpreters

* Interpreter (f#%¥) A translating program
that translates and executes the
statements in sequence

— Unlike an assembler or compiler which
produce machine code as output, which is
then executed in a separate step

— An interpreter translates a statement and then
immediately executes the statement

— Interpreters can be viewed as simulators

Java

¢ Introduced in 1996 and swept the
computing community by storm

+ Portability was of primary importance

» Java is compiled into a standard machine
language called Bytecode

* A software interpreter called the JVM
(Java Virtual Machine) takes the Bytecode
program and executes it

8-27

Programming Language
Paradigms
* What is a paradigm?

+ A set of assumptions, concepts, values,
and practices that constitute a way of
viewing reality

8-28

Programming Language

(8) ACes program John's G program
compiled and run
on iferant systems.
UNIX Workstation Macistosn
Cas compilar Cas compler ‘
|
— —
—_—)
machine language machine language
UNIX workstation Macntosn
Figure 8.2
Portability provided Sy Sty
by standardized PR ugan |
languages versus !
interpretation by — —_—
Bytecode ¥ v

Programming Language

(&) Java program Nell's Java program
compiled into
Bytocad and run
o ciflerent system
Java compiler
indows PC
or UNIX
workstation or
Macintosh
—

Nelf's Bytocods program

Figure 8.2 Windows PC | e

Portability provided funning JVM | running JVM
by standardized

languages versus — 8
interpretation by T
Bytecode

Magintosh |
running JVM ‘

]
¥
Output

Output Output 830

2018/11/1

Programming Language Programming Language
Paradigms Paradigms

* Imperative or procedural model * Logic programming

—FORTRAN, COBOL, BASIC, C, Pascal, —PROLOG

Ada, and C++ . . .
' * Object-oriented paradigm

* Functional model — SIMULA and Smalltalk

— LISP, Scheme (a derivative of LISP), and ML — C++ is as an imperative language with some

object-oriented features

—Java is an object-oriented language with
some imperative features

Programming in Python e C1/1)

. . . 1. Program with machine language according to the following c.
>>> # Fibonacci series: intBasl: suag e e
. int 8c=a+3;
the sum of two elements defines the next) Wite your assembly code & machine code
ab=0.1) Explain machine code execution with the fetch-decode-execute cycle
> 2) Explain functions about IR, PC, ACC registers in a CPU

>>> while b < 10:) Explain physical meaning about vars a & ¢ in a machine

print b
a,b=Db, atb

) What are stored in memory?
) Can a data or a instruction stored in the same place?
) Explain Instruction Format with example instructions.

1
2
3
4
2
1
2
3
3y ERELL T

1) L4055 (Assembly Language)

2) 4t (Compiler)

3) fir4s\ifis (Imperative programming)
4) B%4iFE1EE (Functional programming)
5) X 4FE (Procedural programming)

7-33 7-34

